Preprint
UCRL-JC-149277

Efficient Computation of
the Topology of Level Sets

V. Pascucci, K. Cole-McLaughlin

This article was submitted to
Institute for Electrical and Electronics Engineers Visualization 2002,
Boston, Massachusetts, October 27 — November 1, 2002

July 19, 2002

U.S. Department of Energy

Lawrence
Livermore
National
Laboratory

="

Approved for public release; further dissemination unlimited



DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of California, and
shall not be used for advertising or product endorsement purposes.

This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be
made before publication, this preprint is made available with the understanding that it will not be cited
or reproduced without the permission of the author.

This report has been reproduced directly from the best available copy.
Available electronically at http:/ /www.doe.gov/bridge

Available for a processing fee to U.S. Department of Energy
and its contractors in paper from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O.Box 62
Oak Ridge, TN 37831-0062
Telephone: (865) 576-8401
Facsimile: (865) 576-5728

E-mail: reports@adonis.osti.gov

Available for the sale to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161
Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-mail: orders@ntis.fedworld.gov
Online ordering: http:/ /www.ntis.gov/ordering.htm

OR

Lawrence Livermore National Laboratory
Technical Information Department’s Digital Library
http:/ /www.lInl.gov/tid/Library.html


http://www.llnl.gov

Efficient Computation of the Topology of Level Sets*

V. Pascucci

K. Cole-McLaughlin

Center of Applied Scientific Computing
Lawrence Livermore National Laboratory

(b) The Augmented Contour Tree reports the
topology of the isosurface, here it has genus 3.

(d) The Contour Tree can reveal hidden
information, such as enclosed components.

(c) Isosurface of genus 9

{‘ Electron Desity Distribution . .
(Methane Molecule) . :
w =0.2715 i . <
(a) The number of components of the isosurface of
isovalue w is equal to the number of intersections
of the Contour Tree with the line w=const.
# w =(.2453
;: w = (0.2398
f20
.Ia:
7 w =0.1513

Figure 1: Augmented Contour Tree of the ectron density distribution of a methane nolecule, shown with four isosurfaces (level sets). Each
arc of the Augmented Contour Tree is labeled by the second Betti number (equal to twice the number of handles of the surface) of the
corresponding isosurface. The four isosurfaces are computed for isovalues w = 0.2715 (a), w = 0.2453 (b), w = 0.2389 (c) and w = 0.1513
(d). Contour (d) is shown in two viwes. The first (standard) view shows only the outer component of the isosurface. The second clipped view
shows the second component in the interior, which presence is reviled by the second intersection of the horizzontal line w = 0.1513 with the

contour tree.

Abstract

This paper introduces two efficient algorithms that compute the
Contour Tree of a 3D scalar field F and its augmented version
with the Betti numbers of each isosurface. The Contour Tree is a
fundamental data structure in scientific visualization that is used to
pre-process the domain mesh to allow optimal computation of iso-
surfaces with minimal storage overhead. The Contour Tree can be
also used to build user interfaces reporting the complete topological
characterization of a scalar field, as shown in Figure 1.

In the first part of the paper we present a new scheme that aug-
ments the Contour Tree with the Betti numbers of each isocontour
in linear time. We show how to extend the scheme introduced in [3]
with the Betti number computation without increasing its complex-
ity. Thus we improve on the time complexity from our previous
approach [8] from O(m log m) to O(n log n + m), where m is the
number of tetrahedra and n is the number of vertices in the domain
of F.

In the second part of the paper we introduce a new divide and
conquer algorithm that computes the Augmented Contour Tree for
scalar fields defined on rectilinear grids. The central part of the

*This work was performed under the auspices of the U.S. Department of
Energy by University of California Lawrence Livermore National Labora-
tory under contract No. W-7405-Eng-48.

scheme computes the output contour tree by merging two interme-
diate contour trees and is independent of the interpolant. In this
way we confine any knowledge regarding a specific interpolant to
an oracle that computes the tree for a single cell. We have imple-
mented this oracle for the trilinear interpolant and plan to replace it
with higher order interpolants when needed. The complexity of the
scheme is O(n + tlog n), where t is the number of critical points
of F. This allows for the first time to compute the Contour Tree in
linear time in many practical cases when ¢t = O(n'~¢).

We report the running times for a parallel implementation of
our algorithm, showing good scalability with the number of pro-
Cessors.

1 Introduction

Scalar fields are used to represent data in different application areas
like geographic information systems, medical imaging or scientific
visualization.

One fundamental visualization technique for scalar fields is the
display of level sets: that is, sets of points of equal scalar value. For
example in terrain models isolines are used to highlight regions of
equal elevation. In medical CT scans an isosurface can be used to
show and reconstruct the separation between bones and soft tissues.

In molecular modeling the representation of the interaction en-




ergy between two molecules is a scalar field defined over a six di-
mensional configuration space. The six dimensions are the three
translational and the three rotational degrees of freedom of the rel-
ative positions of the two molecules. The level sets of the field
represent all the configurations which are energetically equivalent.

The domain of a scalar field is typically a geometric mesh and
the field is provided by associating each vertex in the mesh with a
sampled scalar value. If the mesh is a simplicial complex then a
piecewise linear function is naturally defined by interpolating lin-
early, within each simplex, the scalar values at the vertices. If the
mesh is a rectilinear grid then a piecewise trilinear function is natu-
rally defined by interpolating, within each cell, the scalar values at
the vertices.

The Contour Tree is a data structure that represents the relations
between the connected components of the level sets in a scalar field.
Two connected components that merge together (as one continu-
ously changes the isovalue) are represented as two arcs that join at
anode of the tree. The pre-computation of the Contour Tree allows
one to collect structural information relative to the isocontours of
the field. This can be used for example to speed up the computation
of isosurfaces by computing seed sets over the contour tree data
structure as in [11]. The display [1] of the Contour Tree provides
the user with direct insight into the topology of the field and reduces
the user interaction time necessary to “understand” the structure of
the data. Figure 1 shows an example of how information can be
extracted from the Contour Tree display.

The first efficient technique for Contour Tree computation in 2D
was introduced by de Berg and van Kreveld in [S]. The algorithm
proposed has O(nlog n) complexity. A simplified version, with
same complexity in 2D and O(m?) complexity in higher dimen-
sions, was proposed by van Kreveld et al. in [11]. This new ap-
proach is also used as a preprocessing step for an optimal isocon-
touring algorithm. It computes a small seed set from which any
contour can be tracked in optimal running time. The approach has
been improved by Tarasov and Vyalyi [10] achieving O(m log m)
complexity in the 3D case by a three pass mechanism that allows
one to resolve the different types of criticalities. Recently Carr,
Snoeyink and Axen [3] presented and elegant extension to any di-
mension based on a two pass scheme that builds a join-tree and a
split-tree that are merged into a unique Contour Tree. The approach
achieves O(m + nlog n) time complexity.

One fundamental limitation of the basic Contour Tree is the lack
of additional information regarding the topology of the contours. In
high pressure chemical simulations [9] hydrogen bonds between the
atoms cannot be represented in a traditional way, but can be char-
acterized by isosurfaces of potential fields. The Contour Tree pro-
vides important information regarding the clustering of atoms into
molecules but fails to discriminate between linear chains and closed
rings (or more complex structures) which have different physical
behaviors. In [8] we introduced the first efficient algorithm for the
computation of the Betti numbers of all the level sets of a scalar
field in O(m log m) time.

The first part of this paper introduces an extension of the algo-
rithm in [3] that allows one to add the Betti numbers of each con-
tour while maintaining the simplicity of the scheme and the efficient
O(m + nlog n) time complexity.

The second part of this paper introduces a new divide and con-
quer scheme for the computation of the Contour Tree. The basic
idea is to compute merge/split-trees by combining recursively the
same trees computed for two halves of the mesh. This approach al-
lows one to achieve better modularity by confining any knowledge
of a specific interpolant to an oracle that computes the tree for a
single cell (in the appendix we report the oracle for the trilinear in-
terpolant). In our analysis of the scheme for the case of rectilinear
grids (m = 8(n)) we show a time complexity of O(n + tlogn),
where ¢ is the number of critical points in the field.

The algorithm is also easy to parallelize. We report running
times for a parallel implementation, showing good scalability with
the number of processors.

2 The Contour Tree

Consider a scalar field F defined as a pair (f, M), where fis a
real valued function and M is the domain of f. In the following
two sections the domain M is assumed to be a simplicial complex
with n vertices and m cells. In Section 5 the domain M is assumed
to be a rectilinear grid. Within each simplex of M the function f is
the linear interpolation of its values at the vertices (trilinear for grid
cells). In other words the field F is completely defined by the mesh
M = {v1,...,v,} and the set of scalar values { f1, ..., fn} Where
fi = f(vi). Since M is connected (or processed one connected
component at a time) the range of f is a simple closed interval
r = {fmin, fmaz] where fain = min {f1,..., fno} and frnaz =
max{fl, .. ,,fn .

For simplicity of presentation M is also assumed to be homeo-
morphic to a 3-ball. One fundamental way to study the field F is
to extract its level sets. For a given scalar z the level set L(z) is
defined as the inverse image of z onto M through f:

L(z) = f7(=).

We call each connected component of the level set L(z) a con-
tour. One aspect that is well understood in Morse theory [7] is
the evolution of the homology classes of the contours of F while
x changes continuously in r. The points at which the topology of
a contour changes are called critical points and the corresponding
function values are called critical values. The critical points are
usually assumed to be isolated. This assumption is not satisfied in
general but can be enforced by small (symbolic) perturbations of
the function values {f1, ..., f»} as discussed in Section 3.

Here this perturbation procedure is weakened by simply assum-
ing that the function values {fi, ..., fa} are sorted from the small-
est to the largest so that ¢ < j = fi < f;. This can be enforced
with an O(nlogn) preprocessing step. In the following the order
of the f; is used to resolve non-isolated criticalities.

We follow the notation of [3] and define the Contour Tree (CT)
as a tree whose vertices are associated with a function value f; and
whose connectivity represents the relation among the contours of
F as follows.

e Each leaf of CT represents a local extremum where a con-
tour is created or destroyed, for continuous changes of z. The
function value of the extremum is associated with the leaf
node of CT.

o Each interior vertex of CT represents the merging and/or
splitting of two or more contours for continuous changes of
. The function value at which a split/merge occurs is associ-
ated with the node.

o Each arc of CT represents a contour that remains isolated for
values of z ranging between the function values associated
with the end nodes of the arc.

Figure 2 shows a 2D scalar field with the associated Contour
Tree. Note that the Contour Tree is not a complete Morse graph
of F since the topological changes of a single contour are not
recorded. A more intuitive way to characterize the Contour Tree
is the following informal definition:

The Contour Tree of F is the graph obtained by contin-
uous contraction of each contour of F to a single point.
Adjacent contours are contracted to adjacent points.
Distinct contours are contracted to distinct points.



3
6
0 1
lné 8
3
1
4 v 4 #

(a)

Figure 2: (a) 2D scalar field (terrain) represented as a tringulation
with elevation values associted with each vertes. The critical points
are marked with colored disks: maxima in red, saddles in green and
minima in purple. A set of representative level sets (isolines) are
drawn in blue. (b) Corresponding contour tree.

In the following we show in 3D how the Contour Tree can be
efficiently computed and augmented with the complete topological
inform ation of each contour. In particular we associate each arc of
the tree with the Betti numbers of the corresponding contour.

3 Contour Tree Computation

This section summarizes the main result of [3], which is an elegant
and efficient algorithm for the computation of the Contour Tree in
any dimension. We refer to [3] for a formal proof of the correctness
of the scheme.

The algorithm is divided into three stages: (i) sorting of the ver-
tices in the field, (ii) computing the Join Tree (JT') and Split Tree
(ST), and (iii) merging the JT with the ST to build the CT.

Sorting vertices. The vertices of the mesh are ordered by in-
creasing function value in O(n log n) time using any standard sort-
ing technique. It is important to remark that the remainder of the
algorithm relies on the assumption that there are no two vertices
with the same function value. Typical input fields do not satisfy
this assumption, therefore we impose an symbolic perturbation of
the function values by replacing the test f(va) < f(vs) with the
test a Z b. After the sorting this is a legitimate operation which
resolves consistently the ties when f(v,) = f(vs) while returning
the same result as the original test in the other cases. In the follow-
ing we also use the symbol i for the node of CT, JT or ST that

corresponds to v;.

Computing the JT and the ST. The computation of the
JT and of the ST is performed in two sweeps trough the data
in forward and reverse vertex order. The JT is built incremen-
tally with a tree data-structure supporting the obvious functions
NewTree(), AddNode(XT, 1) and AddArc(XT,1, 7). Implicitly
the JT tracks the history of the UNION operations of a UNION-
FIND data-structure over the set of vertices in the mesh with respec-
tively increasing and decreasing function value. NewSet(UF, )
creates the new set {i}, with reference node i. If k belongs to the
set i then Find(UF, k) returns ¢ in constant time. Union(UF,1, j)

redirects the pointers of all the elements in j to point to 4, if ¢ has
larger cardinality than j (vice versa if |i]| < |j]).

The Boolean function IsMin(F, v;) returns true if v; is a local
minimum in JF.

JoinTree(vertices, edges)
1 JT=NewTree()
2 UF= NewUF()
3for i=0ton —1do:

4 AddNode(JT,1)

5 if IsMin(F, v;) then NewSet(UF, i)

6 for each edge v;v; with j < i do:

7 i « Find(UF,1)

8 j' « Find(UF,j)

9 if j' # i’ then AddArc(JT,i', ;')
10 Union(UF,1,j")

12 return JT

Each vertex v; is associated with two lists UpAdj, of incident
edges (vi,v;) with 5 > 1, and DownAdj of incident edges (vi, v;)
with j < 1. In this way IsSMin(F, v;) can test in constant time if
i is a minimum (DownAdj is empty) and the loop on line 6 scans
directly the elements of DownAdj.

The routine SplitTree has the same structure as JoinTree. The
only differences are as follows: (i) the main loop (line 3) would
scan the vertices in reverse order, (ii) the if statement in line 5 would
test IsMax instead of IsMin and (iii) the inner loop (line 6) would
consider the edges (vi,v;) with j > i. These routines are shown
in [3] to have worst case time complexity of O(m + tlogt)

Merging the JT with the ST. In the last stage of the algo-
rithm the JT is merged with the ST to build the CT. The up-
per leaves of the JT and the lower leaves of the ST are suc-
cessively removed from both trees and added to the CT. Con-
sequently the data-structure representing the JT' and the ST
has to support the additional operations DelNode(XT,i), and
Leaf(XT,i). DelNode(XT,i) removes the node i from XT
while maintaining the consistency of XT by removing any arc
ij and replacing any pair of arcs ij, ik with the arc jk. The
Boolean function Leaf(XT,1) tests whether the node i is a leaf
of XT. More specifically Leaf(JT,1i) is true if the JT has no
arc ij with j < ¢ and Leaf(ST),1) is true if the ST has no arc
ij with j > i. GetAdj(XT,i) returns a vertex j if XT con-
tains the arc ¢j. A queue data-structure is used to store pairs
[NodeName,TreeName), and is managed with the functions
NewQ() (to create a queue), Get(Q) (to get a pair from the queue
Q) and Put(Q, [i, XT]) (to add a pair to Q).

ContourTree(JT, ST)
1 Q « NewQ()
2 CT + NewTree()
3 fori=0ton —1do:
4 AddNode(CT,1)
5 if Leaf(JT,1) then Put(Q, [i, JT)
6 if Leaf(ST,i) then Put(Q, [i, ST))
7 while [i, XT)] + Get(Q) do:
8 j + GetAdj(XT,q)
9 DelNode(ST,1)
10 DelNode(JT,1)
11 AddArc(CT,ij)
12 if Leaf(XT,j) then Put(Q,[j, XT))
13 return CT

One can minimize the size of the CT by deleting any node that
has exactly degree two with DelNode. This reduction to a minimal



CT can be done directly during the construction of the JT' and of
the ST. This makes the algorithm slightly more complicated but
has the advantage of reducing the size of the intermediate storage.

This last stage of the algorithm has O(n) complexity. Overall the
algorithm for constructing the CT has O(m + n log n) complexity,
since ¢ is never greater than n.

4 Betti Numbers Computation

This section introduces a modification to the function ContourTree
that provides a more detailed characterization of the contours of a
scalar field. The output generated by the modified function is the
Augmented Contour Tree (ACT), as defined in [8], which has a
triple (Bo, 1, B2) of Betti numbers associated to each arc of the
tree. The k-th Betti number S of a simplicial complex is the rank
of its k-dimensional homology group. We restrict our attention to
level sets of 3D scalar fields, which are 2-dimensional complexes.
In this case only the first three Betti numbers may be non-zero.
Their intuitive interpretation is as follows: S is the number of con-
nected components, 5 is the number of independent tunnels, and
B2 is the number of voids enclosed by the surface.

Figure 3(a) shows the minimal CT for a simple scalar field that
has one minimum at isovalue z = 0. The level set f~(0) is a
single contour coincident with the boundary of the mesh (on the
bottom left). As the isovalue is continuously increased, the level
set splits into four contours at isovalue x = 2 (on the middle left).
Each contour shrinks to a single point and disappears at the maxi-
mum isovalue £ = 4 (on the top left). Figure 3(b) shows the mini-
mal ACT for the same scalar field. The added information allows
the user to observe that the level set at the minimum is topologically
a sphere (8o = 1, 81 = 0, 81 = 1) which turns into a toroidal con-
tour (Bo = 1,81 = 2,81 = 1) at isovalue z = 1.2. The toroidal
contour then splits into four components each being a topological
sphere.

In general the ACT has the same structure of the CT since it has
the same nodes of degree not equal to two (extrema and merge/split
points) and the same connectivity among them. The main differ-
ence between the two trees is that the CT, in its minimal form, has
no nodes of degree two. In contrast the ACT requires degree two
nodes at the isovalues where a contour changes its topology with-
out splitting or merging. Because of these added nodes, each arc
of the ACT is associated with a family of contours that are homo-
logically equivalent and hence qualified by the same set of Betti
numbers. Moreover the contours associated with an arc contain no
critical points and the Betti numbers are restricted as follows: (i)
Bo is always 1, (ii) B2 is O for surfaces with boundary (open) and
is 1 for surfaces without boundary (closed). Once Bo and 32 are
determined we can compute the value of §; using its relationship
with the Euler characteristic x:

X = Bo — B1 + B2. @

Given a triangulated surface, the Euler number x is defined as the
number of vertices minus the number of edges plus the number of
faces. In addition to computing the Euler number, for each contour
we count the number of boundary edges (be). In this way we can
determine 32 by checking if be > 0 and then use (1) to compute
B1=Bo+f2 —x.

In a preliminary stage we compute, for each vertex v, the in-
formation necessary to determine the difference between the Euler
number of the level set L(f(v) + €) and the Euler number of the
level set L{f(v) — €) where € > 0 is an arbitrarily small number
(remember that f(v) = f(w) implies v = w). Figure 4 shows
two such level sets for a 2D scalar field. The vertices with function
value greater than f(v) are marked & and the vertices with func-
tion value smaller than f(v) are marked ©. Any simplex containing

@ (®)

Figure 4: Comparison between two level sets (isolines in gray) of
a 2D scalar field. (a) shows an isoline of isovalue f(v) —e. (b)
shows an isoline of isovalue f(v) + €. The difference between
combinatorial structure of the two isolines is confined within the
star of simplices incident to v.

both vertices of type & and vertices of type © give the same con-
tribution to the Euler numbers of the two contours and hence are
not considered. The only simplices that are relevant are those con-
taining v and only vertices of type © or those containing v and only
vertices of type é. We call the lower star of v the set of simplices of
the first type (v, S, ..., ©) and the upper star the set of simplices
of the second type (v, ®,...,®). For both stars we compute the
respective Euler numbers LS and US (number of vertices minus
number of edges plus number of triangles minus number of tetra-
hedra). We also count the difference Abe between the boundary
edges of L(f(v) — €) and L(f(v) + ¢€). This is summarized in the
following algorithm.

LUStars(vertices, edges, triangles, tetrahedra)
1 fori=0ton—1do:
2 LS;=US;=1
3 Abe; =0
4 for each edge (vi,v;) withi < jdo:
5 LS;+ LS;—1
6 US;+US;—-1
7 for each triangle (v;,v;,vx) withi < j < kdo:
8 LS+ LS:+1
9 US;+US;i+1
10 if (vi,vj, vi) is a boundary triangle then:
11 Abex +— Aber — 1
12 Abe; +— Abe; +1
11 for each tetrahedron (v;,vj, vk, v1) Withi < j <k <ldeo:
12 LS« LS -1
13 US;+US;—1
14 return(LS,US, Abe)

From a CT that contains all the nodes we build the correspond-
ing ACT. We call x;; the Euler number of the contour associated
with the arc ij of the CT'. For any fixed i the summation Y, x5,
with j < 1, is the sum of the Euler numbers of the contours of
L(f(vi) — €) which intersect the star of v;. Similarly we denote by
be;; the number of boundary edges of the contour associated with
the arc tj.

We consider, at a generic node £, the relation between LS;, US;
and the Euler numbers of the contours associated with the arcs in-
cident to i. In particular each edge, triangle and tetrahedron in the
lower star of v; produces one vertex, edge and face, respectively,
in some contour of L(f(v;) — €). In the same way cach edge, tri-
angle and tetrahedron in the upper star of v; produces one vertex,
edge and face, respectively, in some contour of L(f(v;) +€). Since
these two terms are the only difference between the Euler numbers
of L(f(v:) — ¢€) and of L(f(v;) + €) we can write:




- x=4.0

- 2<x<4

x=2.0
L.2<x<2
= x=1.2
0<x<l.2
i
XX/
(@ (®)

Figure 3: (a) Information provided by the standard C'T for a simple scalar field. (b) The added information provided by the ACT provides a

better understanding of the structure of each contour.

2 xii +LSi = Y xij +US;

ijlj<i ijli>i

Overall we have a set of n linear equations, one for each node
of the ACT, with n — 1 unknowns x;;. To solve this system we
define n artificial variables x; that are initially set to zero. In this
way one can rewrite the linear equations as follows:

Xi + z xij + LS; = Z xij + US;i 2)

iilj<i ijlisi

A similar argument holds for the count of the boundary edges
be;; of each contour. We define an array of auxiliary variables be;
that are initially set to zero and satisfy the following equations:

be; + Z beij + Abe; = Z be;; 3)
ijlj<i iili>i

We solve the systems of linear equations defined by (2) and (3)
with the procedure AugmentedContourTree, which incrementally
moves an arc 1j from the CT to the ACT each time the correspond-
ing value of x;; can be determined (the function Degree(XT, v)
returns the degree of the node v in XT'):

AugmentedContourTree(CT— with—all-nodes)
1 Q + NewQ()
2 ACT + NewTree()
3fori=0ton —1do:
4 xi+<0
5 beie0
6 AddNode(ACT,1)
7 if Degree(CT,i) = 1 then Put(Q, )
8 while i « Get(Q) do:
9 j + GetAdj(CT,q)
10 AddArc(ACT,i,j )
11 ifi<jthen 6§ « +1 elsed « —1
12 xij + 6(xi — US; + LS;)
13 be,-,- — 5(66; + Abe.-)
14 xj « X5 + 0 Xxij
15 be;j «+ be; + 6 - be;;
16 DelNode(CT,1)
17 if Degree(CT,j) = 1 then Put(Q, )

18 return ACT

Note that the while loop in line 8 has the same structure of the
while loop in line 7 of ContourTree (see page 3). Therefore one
can compute directly the Euler numbers x;; and merge the JT with
the ST in the same loop. The Betti numbers can also be added at the
same time. For completeness we report the function that computes
the Betti numbers as a post-processing.

BettiNumbers(ACT)
1 for each arc ij of ACT do:
2 Poij & Paij + 1
3 ifbei; #0thenfSz;:; + 0
4 P+ Po+ P2 — xij

ACT Reduction. The following function, Reduce, removes all
of the non-critical points from the ACT in order to reduce it to its
minimal form. The test is based on the critical point theorem in [2]
and can detect the critical points in constant time once the arrays LS
and U S have been computed. Note that this removal of non-critical
points can be done during the computation of the ACT reducing
the necessary intermediate storage.

Reduce(ACT)
1 fori =0ton — 1do:
2 LS ;=US;=0
3 DelNode(ACT,1)

Correctness. The correctness of the routines LUStars and Bet-
tiNumbers derives directly from the definitions of the parameters
computed. To prove the correctness of AugmentedContourTree
we show that there are two invariants which remain true at each
iteration. The invariants are the systems of equations (2) and (3).
Initially both systems are true by definition, since all the x; and the
be; are set to zero. We focus only on equations (2) since the same
argument holds for (3).

At each iteration of the while loop (line 8) a leaf ¢ is selected
from the CT together with its incident arc ij. Therefore the ith
equation of (2) has only one unknown, x;;. Xi;j is computed with




the explicit formula x;; = LS; — US; + xi, if § > 1, or with the
explicit formula x;; = US; — LS; — xi, if j < i. The node i and
the arc ij are then removed from CT invalidating the jth equation
of (2) since the term x;; is no longer present. We restore its cor-
rectness by adding the value of x;; to xj, if j > i (or subtracting
if § < 4). Thus, after each iteration the CT is reduced by an arc,
while the systems (2) and (3) remain true.

At the end of the loop the tree CT has no arcs and all the terms
xi; and be;; are computed. O

Complexity. The complexity of the procedure LUStars is
O(m) while the complexity of AugmentedContourTree and Bet-
tiNumbers is O(-n). Overall the computation of the ACT with the
Betti numbers remains O(m + nlogn). This is an improvement
over the prevxous O(mlog m) achieved in [8] since m can be as
big as O(n?).

5 Divide and Conquer for Rectilinear
Grids

This section introduces a new way to compute the JT and the ST
using a divide and conquer strategy. We restrict our analysis to the
case of scalar fields F = (f, M) where M is a rectilinear mesh of
dimensions n. X ny X n.. This is the type of mesh that typically has
the largest number of vertices (i.e. the type used in the largest simu-
lations or generated by high resolution MRI/CT scanning devices).
In this case the function f is defined within each cell as the trilinear
interpolation of the field values at the eight vertices. In this frame-
work we cannot use the algorithm ContourTree since it assumes
properties that are specific to a piecewise linear interpolant. For ex-
ample, the trilinear interpolant admits critical points in the interior
of a cell, a condition not allowed by ContourTree. Triangulating
the cells of the grid is usually not an option for large data-sets espe-
cially because the same topology cannot be reproduced in general
unless several more vertices are added to each cell of the mesh.

Our approach overcomes this problem by assuming an oracle
OracleJT(F, M) that returns the JT of F if M is a single cell.
We have implemented such an oracle for the trilinear interpolant
on a cube (see Appendix). To extend the scheme to data-sets with
other types of interpolants, for example a triquadratic interpolant,
requires only to replace the function OracleJT. OracleST(F, M)
is simply OracleJT(—F, M).

Recursive algorithm. The algorithm has the same structure of
a merge sort scheme with the added feature that non-critical ver-
tices are removed as soon as possible. This removal provides an
output sensitive character to the algorithm that improves both its
time complexity and its space complexity.

RecursiveJT (¥, M)

1 if Dimensions(M) = (2,2, 2) then
2 return OracleJT(F, M)

3 [My, M2] + Spiit (M)

4 JT, + RecursiveJT (F, M;)

5 JT: + RecursiveJT (F, M2)

6 JT « MergedT(JTh,JT?)

7 return Reduce(JT)

The function Split (M) divides in constant time the domain of
the mesh into two approximately equal meshes M1 and M.
particular if M has size (nz, ny,n.), withnz > n, > n,, then
M1 has size (n,,,n,,,n,) and M; has size (n,,n,,,n,) where

= [n./2] and ny =n, + 1 —n;.

Tree merging. The routine MergeJT below combines the join
trees of the two halves of the mesh using a UnionFind data-structure
in the same way the routine JoinTree computes the global JT' from
the edges of the mesh. Two key differences need to be highlighted:

o MergedT sorts the input nodes in linear time since JT37 and
JT- have their nodes already sorted. In particular one linear
scan through the input trees sorts the nodes and at the same
time merges the duplicate nodes, which correspond to ver-
tices on the surface M, N Mg. This task is performed by
MergeNodesSorted which also returns the total number of
distinct nodes.

s MergedT copies verbatim into JT the independent portions
of JT1 and of JT3. This is done in linear time. The
UnionFind data-structure is used starting at the nodes that
correspond to local minima of the scalar field restricted to
M1 N M3 (Flminag)- The test for minima is performed
by IsMin in constant time.

MergeJT(JT1, JT2)
1 JT=NewTree()
2 UF = NewUF()
3 k + MergeNodesSorted(JT1, JT2)) -
4 for each nodei =0 to k — 1 do:
5 AddNode(JT,3)
6 if IsMin(F|a;nag, i) then NewSet(UF, 1)
7 for each edge v;v; with j < i do:
8 i + Find(UF,1)
9 j + Find(UF,j)
10 if j' # ' then AddArc(JT, 7, ;')
11  Union(UF,%,j")
12 return JT

Let n be the number of vertices of M1 and Mgz, k be the
number of nodes of JT1,JT2 and ¢ be the number of the min-
ima of F|aynm,. The complexity of MergeJT is O(n*/3 +
k + tlogt). Since t = O(n*?) we can rewrite the complexity
as O(n?/3 log n + k).

ACT Reduction. As shown in section 4, Reduce can test if a
point i is non-critical simply by looking at L.S; and US;. In this
context IsRegular performs the same combinatorial test modified
for the interpolant used by OracleJT. Note that the last call to Re-
duce should be modified to not check Islnterior, so that all of the
non-critical points are removed. Otherwise non-critical points on
the boundary of the mesh would remain in ACT.

Reduce(ACT)
1 fori =0tondo:
2 iflsInterior(i) and IsRegular(s)
3 DelNode(ACT, )

Complexity. To determine the complexity of RecursiveJT we
analyze separately the cost of dealing with the interior critical
points and the cost of dealing with the boundaries that are ar-
tificially introduce by the subdivision process and removed by
MergeJT.

We assume that 7 is the number of cells of M and that Split par-
titions M into two equal halves of size n/2. Therefore the number
of levels in the recursion tree of RecursiveJT is log n.

The function OracleJT, which takes constant time, is invoked
exactly n times (once per cell), accounting for a O(n) time com-
plexity.




As the sub-meshes are merged together boundary points become
interior points. In particular every point is processed by Reduce in
constant time. Moreover any point that fails the test IsRegular is
also processed in constant time by MergeJT at every level of the
recursion. If F has ¢ critical points we spend O(n + tlogn) time
to find and process them.

To analyze the cost of dealing with the boundaries we apply
the master theorem of recursive functions reported on page 62
of [4]. The theorem allows one to determine the complexity of
a function T'(n) on the basis of the recurrence formula T'(n) =
2T (n/2) + f(n) and the complexity of the function f(n). In this
case T'(n) is the complexity of our recursive algorithm and f(n) is
the complexity of MergeJT with reference to the boundary points
only (the other points have already been accounted for). As dis-
cussed earlier the highest cost in MergeJT is due to the Union-
Find, which we have set conservatively to O(n?/2logn). This
means that f(n) has complexity O(n!™¢) for some € and hence
T(n) = 6(n). In conclusion the complexity of RecursiveJT is
O(n + tlogn). For practical cases where ¢ is less than linear we
have ¢t = O(n'—¢) which means the overall complexity is O(n).

For the case of large data-sets it is also crucial to minimize the
cost of any auxiliary storage. Beyond linear storage in the size ¢ of
the output, RecursiveJT keeps a storage proportional to the bound-
ary of the mesh. Overall the auxiliary storage is O(t + n%/3).

6 Practical Results

This section reports some practical results from our implementation
of the the two algorithms discussed in Sections 4 and 5. We first
present an example of the Augmented Contour Tree of the scalar
field obtained for a simple molecular data-set (methane) that shows
surprisingly intricate topological structures. Next we compare the
timings for the computation on data-sets of five different sizes.

Methane. We consider the topological analysis of a small scalar
field computed by an ab initio simulation conditions for the
methane molecule. We have computed the ACT and displayed it
using the graph drawing tool graphviz [6]. The top portion of this
graph is shown in figure 1, along with several isosurfaces, and their
corresponding points in the ACT. We focus on this portion of the
dataset since it is known that the simulation becomes less reliable
at lower densities.

The Methane dataset, which is on a 32x32x32 rectilinear grid,
is the simplest non-trivial dataset we explored. It is a nice exam-
ple, since the visualization of the tree is possible by conventional
means. This gives us a good way of exploring the possibilities of
using the ACT as an interface for data understanding. We see from
the isosurfaces (b), (¢) and (d) that there is useful information sum-
marized in the ACT which is not obvious from the visualization.
The isosurfaces (b) and (c) can be seen immediately to have 81 = 6
and B; = 18 respectively, which implies that their respective genus
g = 3 and g = 9 since g = B /2 for closed surfaces. In the iso-
surface (d) the initial visualization shows a single surface, whereas
the ACT shows 2 distinct components. Only after adding a clip-
ping plane the second component is shown to be enclosed within
the first.

Performance. We have implemented in parallel the divide and
conquer ACT algorithm on a shared memory platform. This is
simply done by creating at each recursion two processes that com-
pute join and split trees for each half of the mesh. The recursion
become sequential as soon as the desired number of processes is
reached. Table 1 summarizes running times for four data-sets of
sizes scaling from thousands to millions of vertices. The speedup

relative to the sequential case is reported in figure 5, compared to
the ideal linear speedup (top line in the chart).

NP HiPIP Rho Engine Foot
64x64x64 | 128x128x128 | 256x256x110 | 125x255x176

1 1.0000 1.0000 1.0000 1.0000
2 1.9754 1.9801 1.9988 1.9993
4 3.7633 3.9168 3.9445 3.8986
8 7.4461 7.6365 7.3503 7.0672
16 13.949 15.457 14.302 12.864
32 26.465 28.460 27.132 20.797

Table 1: Performance results for four sample data-sets. The values
given are the speedups achieved in computing the ACT on NP pro-
cessors as compared to the case NP=1. The ideal speedup would be
NP times faster.

Figure 5: Practical speedups obtained in the parallel implementa-
tion for four datasets of different sizes, compared with the ideal
linear speedup.

One can see that the speedup obtained in the parallel implemen-
tation scales nearly linearly. The coarse grained subdivision in our
method is easily implemented in parallel. Each processor becomes
responsible for a connected subregion of the mesh, and works com-
pletely independently of the other processes. The only communica-
tion necessary is for a child process to return the JT and ST that it
computed to its parent.

7 Conclusions

In this paper we have introduced two schemes for the computation
of the ACT for scalar fields defined on simplicial meshes and on
rectilinear grids. The first scheme is an extension of the algorithm
proposed in [3] with the computation of the Betti numbers.

The second contribution is a divide and conquer scheme for rec-
tilinear grid domains. The complexity of this second scheme is
improved further to O(m + tlog n) where t is the number of crit-
ical points in the mesh. Moreover we demostrate good practical
scalability of a simple parallel implementation of this algorithm.

The comparison between the two schemes is interesting even if
they apply to different classes of inputs. In particular the divide
and conquer approach seems to present several advantages espe-
cially for the processing of large data-sets. For instance, the auxil-
iary storage is kept as low as O(n?/3 4 t). In contrast the original
scheme can have O(n) auxiliary storage since the union find pro-




cessing needs to maintain auxiliary information on a set of vertices
as large as the largest isosurface in the mesh.

In principle there seem to be no major problems preventing
the application of the divide and conquer scheme to unstructured
meshes but further investigation is necessary to verify if the same
performance benefits can be guaranteed in general.

The simple task of drawing the CT has become a major problem.
For data-sets that we have successfully processed we already obtain
trees that current graph drawing tools cannot handle. Still we plan
to work on data-sets that are orders of magnitude larger. In such
cases the development of interfaces that display the CT" will present
a major challenge.

References

[1]1 Chandrajit L. Bajaj, Valerio Pascucci, and Daniel R. Schikore.
The contour spectrum. In Roni Yagel and Hans Hagen, edi-
tors, IEEE Visualization 97, pages 167-175. IEEE, November
1997.

[2] Thomas Banchoff. Critical points and curvature for emmbed-
ded polyhedra. Differential Geometery, 1{(1):245-256, 1967.

[3] Hamish Carr, Jack Snoeyink, and Ulrike Axen. Computing
contour trees in all dimensions. Computational Geometry
Theory and Applications, 2001. To Appear (extended abstract
appeared at SODA 2000).

[4] T.H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction
to Algorithms. MIT Press, Cambridge, MA, 1990.

[5] Mark de Berg and Marc J. van Kreveld. Trekking in the alps
without freezing or getting tired. Algorithmica, 18(3):306—
323, July 1997.

[6] John Ellson, Emden Gansner, Eleftherios Koutsofios, John
Mocenigo, Stephen North, , and Gordon Woodhull. Graphviz.
AT&T Research

http://www.research.att.com/ north/graphviz/.

[7] J. Milnor. Morse Theory, volume 51 of Annals of Mathematics
Studies. Princeton University Press, 1963.

[8] Valerio Pascucci. On the topology of the level sets of a scalar
field. In 12th Canadian Conference on Computational Geom-
etry, pages 141-144, August 2001.

[9] Eric Schwegler, Giulia Galli, and Francois Gygi. Water under
pressure. Physical Review Letters, 84(11):2429-2432, 2000.

[10] Sergey P. Tarasov and Michael N. Vyalyi. Construction of
contour trees in 3d in o(n log n) steps. In Proceedings of
the fourteenth annual symposium on Computational geome-
try, pages 68—75, Minneapolis, June 1998. ACM.

[11] M. van Kreveld, R. van Oostrum, C. Bajaj, V. Pascucci, and
D. Schikore. Contour trees and small seed sets for iso-
surface traversal. In Proceedings of the 13th International
Annual Symposium on Computational Geometry (SCG-97),
pages 212-220, June 1997. Extended version. Techincal re-
port UCRL-JC-132016 Lawrence Livermore National Labo-
ratory.

lz
Am Ap Car
Bapm1
By2
m 1 Bar

B Car
A ) l *
ly ML Lae 2
—= - @ = -
a-| L€ Am |Bm Cm
Bjr 'm2 m
@ ®)

Figure 6: (a) 2D bilinear function. The saddle point s is marked
with the symbol o. The horizontal line I, and the vertical line I
have constant function value and intersect at s. The orientation of
the edges of the rectangles A,B,and C is along growing F. (b)
Split trees of F restricted to the rectangles A, B and C. By, is the
minimum between By,1 and Bna.

Appendix

We consider the problem of computing the merge and split trees
for a cell with a trilinear interpolant. Our analysis is limited to the
split tree since the join tree is computed symmetrically. We show
that in the 2D case there are only two possible split trees and in 3D
there are only four possible split trees. In both cases the topology
of the split tree is completely determined by the number of maxima
present in the cell.

Bilinear Interpolant on a Rectangle

Consider a bilinear function F' : R? — R. The analytical definition
of F and its gradient VF is as follows:

F(z,y) = azy+br+cy+d, @
_ |oF/ox| __ |lay+b
VF = [BF/By] - [az + c] ’

where a, b, ¢, d are real numbers. Since OF/dz, and 3F/dy, are
linear functions it is not possible to have a local maximum or min-
imum for finite values of £ and y. Imposing VF = 0 one finds
the unique saddle point s for z = —c/a, and y = —b/a. More-
over, F' is constant along the vertical line I, : z = —c/a, and the
horizontal line I, : y = —b/a. Since JF/dz is not a function of
z the restriction F|y=const Of F to any line parallel to the ¢ axis
has constant gradient. The gradient of F'|y—=const On all the lines
above [, is anti-parallel to the gradient of F'|y—const on all the lines
below I, (see Figure 6). Similarly, I separates the vertical lines
where F|z—const has upward gradient from those with downward

gradient.
Fact 1 There is exactly one saddle point s of F in the plane.

Fact 2 The function F is constant on the line . orthogonal to the
x and on the line l, orthogonal to the y axis, where 1. intersects 1,
at the saddle point s of F.

We analyze the restriction of F' to axis aligned rectangles. Since
F is linear along each line parallel the coordinate axis we can mark
each edge of a square with respect to the direction of increasing
values of F. Figure 6(a) shows the three different types of squares
that one can have with respect to the orientation of their edges. A
square of type A has each pair of opposite edges with parallel ori-
entation. Therefore A cannot intersect I, or I,. This type of square
has one maximum Aas and one minimum A, for F|4. A square
of type B has both pair of opposite edges with anti-parallel orien-
tation. Therefore B intersects both 1> and ly. The saddle point s



® @—7. ® @
I I ¥
©-—
é o) (I) L——07 o
@ ()]
®<«——0 @ ® ®- .--O©©@@
® 7] A VA DV 285
® \ / = - R/
5 1 [ o] ¥
—|+=® O—|=®
Pl Ve  CaliD 2
«© (0} (O]
O munimum @ saddle ® maximum

Figure 7: Possible configurations of split tree for a trilinear inter-
polant restricted to and axis aligned parallelepiped. One the left
of each tree there are one or two examples of corresponding paral-
lelepipeds. (a) One maximum. (b) Two maxima. (c) Three max-
ima. (d) Four maxima. () Split tree with four maxima that cannot
be constructed.

must be inside B because it is at the intersection between I, and
1,. All four vertices of B are extrema (two maxima and two min-
ima) of F'|p. In the third type of square C one pair of opposite
edges are parallel while the other pair are anti-parallel. Thus, C
must intersect either 1. or Iy, and F|c has one maximum and one
Fact 3 The bilinear function F restricted to an axis aligned rectan-
gle can have only one or two maxima. The maxima can be located
only at non-adjacent vertices.

Figure 6(b) shows how the split trees of F'|4 and of F|¢ are
both single lines connecting the minimum to the maximum. The
split tree of F|z has one line that connects the lower minimum to
the saddle s. At s the split tree of F|p bifurcates into two lines
connecting s to the two maxima.

Trilinear interpolant on a Parallelepiped

We extend our analysis to the trilinear case and show how to com-
pute the shape of the split and merge trees for a cube on the basis
of the orientation of its edges and the function value of the even-
tual body saddle points. The general formulation of the trilinear
interpolant is:

F(z,y,2) = azyz+ bzy+cxz+dyzt+ex+gy+hz+k, (5)
with gradient:
e+ by +cz+ayz
VF=|g+bzx+dz+azz|.
h+cx +dy + azy

It is easy to see that restricting (5) to any plane orthogonal to
a coordinate axis (for example of equation z = const) yields the
bilinear function of type (4). Therefore there is no local minimum
or maximum of F. Solving VF = 0 we find two critical points of
coordinates:

Figure 8: Impossible configurations that would be necessary to al-
low the construction of a split tree shown in Figure 7(e). (a) 3D
view. (b) projection onto the zy plane.

These critical points are both saddles (of indices 1 and 2).
Fact 4 There are at most two critical points (both saddles) in F.

We next consider the restriction of F' to an axis aligned paral-
lelepiped P and mark its edges with the direction of increasing F.
The restriction of F to any face of P is the bilinear interpolant dis-
cussed in the previous section, therefore facts 4 and 3 imply that
one can have maxima of F'|p only at its vertices. Moreover, each
face of P can have only two maxima so that the greatest number
of maxima of F|p is four. Figure 7 shows the five distinct types
of split trees that can be built with up to four maxima. We show in
the following that the last type is not consistent with the topology
of the trilinear interpolant.

Fact 5 The split tree of F|p cannot have the topology of Fig-
ure 7(e).

Proof: Assume that the tree of Figure 7(e) is a valid split tree
for some F|p with maxima M1, M2, M3 and M4. This means
that there exist an isovalue w such that the region of P with F
greater than w is partitioned into two connected components R1
(containing M1 and M2) and R2 (containing M3 and M4), as
shown in Figure 8(a). Since R1 is connected we can find a line I3
that connects M1 to M2 within R1. Similarly we find a line [ that
connects M3 to M4 within R2.

Let’s call S1 the front square containing the maxima of R1, and
52 the back square containing the maxima of R2 (S1 and S2 must
be opposite faces of P). We assume, without loss of generality, that
S1 and $2 are orthogonal to the z axis. We consider the parallel
projection P along the z axis, onto the zy plane. The images I3, I%
of I3, I must intersect in P’ (projection of P) because they connect
the two pairs of vertices. Their intersection point v’ = 1] N 15 is
the image of a ray r that is parallel to the axis z and that intersects
both I; and I, within P. By construction we have that FF > w
for g1 = r Nl and for g2 = r N 1. Moreover, since R1 is not
connected with R2, there must be a point g on r, between ¢; and
g2, where F < w. Along r the value of F first decreases from
F(q1) to F(q), and then increases from F'(g) to F((g2). Butina
trilinear function the value of F' must be monotonic along any line
parallel to an orthogonal axis. Thus we have a contradiction, since
we have shown that F is not monotonic along r, which is parallel
to the z axis. °

o= diae—bc)x VA _ clag—bd)=vA _ blah —cd) = VA Inconclusion we can state the following:

a(ec—ae) YT 7 a(bd—ag) 2=

where the term +/A is either added in all expressions or subtracted
in all expressions, and A is:

A = (bc — ae)(bd — ag)(cd — ah).

a(cd — ah)

?
Theorem 1 The topology of the split tree of F|p is completely de-
termined by the count of its local maxima.

The important practical consequence of this theorem is that we
can precompute four templates of split trees and for each element




in the mesh we select the appropriate template simply from the ori-
entation of the edges. Simple numerical computations allow one to
determine the specific values of the saddles where the merge occurs.




